Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62104
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBahrouni A.-
dc.contributor.otherHo K.-
dc.date.accessioned2021-08-20T14:50:17Z-
dc.date.available2021-08-20T14:50:17Z-
dc.date.issued2021-
dc.identifier.issn0921-7134-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62104-
dc.description.abstractIn this paper, we give some properties of the new fractional Sobolev spaces with variable exponents and apply them to study a class of eigenvalue problems involving the fractional p (·)-Laplace operator. We obtain sequences of eigenvalues going asymptotically to infinity and we also establish sufficient conditions to get zero value for the principal eigenvalue, which is a striking difference between the variable exponent case and the constant exponent case. As an application, we obtain several existence and nonexistence results for the eigenvalue problem according to the asymptotic growth of the nonlinearity and the range of the spectral parameter. © 2021-IOS Press. All rights reserved.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherIOS Press BV-
dc.relation.ispartofAsymptotic Analysis-
dc.relation.ispartofseriesVol. 123, No. 1-2-
dc.subjectEigenvalue problemsen
dc.subjectFractional Sobolev spacesen
dc.subjectVariable exponentsen
dc.subjectVariational methodsen
dc.titleRemarks on eigenvalue problems for fractional p (·)-Laplacianen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.3233/ASY-201628-
dc.format.firstpage139-
dc.format.lastpage156-
ueh.JournalRankingScopus-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.