Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/59277
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCharles Castain-
dc.contributor.otherC. Godet-Thobie-
dc.contributor.otherPhan D. Phung-
dc.contributor.otherLe X. Truong-
dc.date.accessioned2019-09-10T04:14:22Z-
dc.date.available2019-09-10T04:14:22Z-
dc.date.issued2019-
dc.identifier.issn1311-0454 (Print), 1314-2224 (Online)-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/59277-
dc.description.abstractThe main purpose of this paper is to study a class of boundary value problem governed by a fractional differential inclusion in a separable Banach space E {Dαu(t)+λDα−1u(t)∈F(t,u(t),Dα−1u(t)),t∈[0,1]Iβ0+u(t)|t=0=0,u(1)=Iγ0+u(1) in both Bochner and Pettis settings, where α ∈ ]1, 2], β ∈ [0, 2 – α], λ ≥ 0, γ > 0 are given constants, Dα is the standard Riemann-Liouville fractional derivative, and F : [0, 1] × E × E → 2E is a closed valued multifunction. Topological properties of the solution set are presented. Applications to control problems and subdifferential operators are provided.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherN/A-
dc.relation.ispartofFractional Calculus and Applied Analysis-
dc.relation.ispartofseriesVol. 22, Issue 2-
dc.rightsWalter de Gruyter GmbH-
dc.subjectFractional differential inclusionen
dc.subjectYoung measuresen
dc.subjectBolza and relaxation problemen
dc.subjectSubdifferential operatorsen
dc.titleOn fractional differential inclusions with Nonlocal boundary conditionsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1515/fca-2019-0027-
dc.format.firstpage444-
dc.format.lastpage478-
ueh.JournalRankingISI, Scopus-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.