Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/57870
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Xuan Truong-
dc.contributor.otherP. D. Phung-
dc.contributor.otherB. T. Quan-
dc.date.accessioned2018-10-29T09:41:55Z-
dc.date.available2018-10-29T09:41:55Z-
dc.date.issued2013-
dc.identifier.issn1847-120X (Print), 1848-9605 (online)-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/57870-
dc.description.abstractThis paper is devoted to the study of the following nonlocal p-Laplacian functional differential equation − φp(x (t)) = λ f(t,x(t),x (t)) _x005F_x0004__x005F_x0005_ 1 0 f(s,x(s),x (s))ds_x005F_x0006_n , 0 < t < 1, subject to multi point boundary conditions. We obtain some results on the existence of at least one (when n ∈ Z+ ) or triple (when n = 0 ) pseudo-symmetric positive solutions by using fixedpoint theory in cone.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElement d.o.o. publishing house-
dc.relation.ispartofDifferential Equations & Applications-
dc.relation.ispartofseriesVol. 5, Issue 1-
dc.subjectBoundary value problemen
dc.subjectPseudo-symmetric solutionsen
dc.subjectP-Laplacianen
dc.subjectLeggettWilliams fixed point theoremen
dc.subjectGuo-Krasnoselskii fixed point theorem fixed point theoremen
dc.subjectGuo-Krasnoselskii fixed point theoremen
dc.titlePositive pseudo-symmetric solutions for a nonlocal p-Laplacian boundary value problemen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.7153/dea-05-04-
dc.format.firstpage53-
dc.format.lastpage68-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.