Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/56214
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Cong Nhan-
dc.contributor.otherDo Huy Hoang-
dc.contributor.otherLe Xuan Truong-
dc.date.accessioned2017-11-03T10:13:43Z-
dc.date.available2017-11-03T10:13:43Z-
dc.date.issued2017-
dc.identifier.issn0044-8753 (Print), 1212-5059 (Electronic)-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/56214-
dc.description.abstractBy using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form x^{(n)} =f(t,x,x^{\prime },\dots ,x^{(n-1)})\,, \quad t \in [0, 1]\,, associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherThe Czech Digital Mathematics Library (DML-CZ)-
dc.relation.ispartofArchivum mathematicum-
dc.relation.ispartofseriesVol. 53, No. 2-
dc.rightsInstitute of Mathematics of the Czech Academy of Sciences-
dc.subjectCoincidence degreeen
dc.subjectHigh order differential equationen
dc.subjectResonanceen
dc.titleExistence results for a class of high order differential equation associated with integral boundary conditions at resonanceen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.5817/AM2017-2-111-
dc.format.firstpage111-
dc.format.lastpage130-
ueh.JournalRankingScopus-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.