Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/56207
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cong Nhan Le | - |
dc.contributor.other | Xuan Truong Le | - |
dc.date.accessioned | 2017-11-03T10:13:42Z | - |
dc.date.available | 2017-11-03T10:13:42Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 0167-8019 (Print), 1572-9036 (Online) | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/56207 | - |
dc.description.abstract | The main goal of this work is to study an initial boundary value problem for a quasilinear parabolic equation with logarithmic source term. By using the potential well method and a logarithmic Sobolev inequality, we obtain results of existence or nonexistence of global weak solutions. In addition, we also provided sufficient conditions for the large time decay of global weak solutions and for the finite time blow-up of weak solutions. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Spinger | - |
dc.relation.ispartof | ACTA Applicandae Mathematicae | - |
dc.relation.ispartofseries | Vol. 151, Issue 1 | - |
dc.rights | Springer International Publishing AG. | - |
dc.subject | Global existence | en |
dc.subject | Blow-up | en |
dc.subject | Asymptotic behavior | en |
dc.subject | Logarithmic source term | en |
dc.title | Global solution and blow-up for a class of p-laplacian evolution equations with logarithmic nonlinearity | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1007/s10440-017-0106-5 | - |
dc.format.firstpage | 149 | - |
dc.format.lastpage | 169 | - |
ueh.JournalRanking | ISI, Scopus | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.